2017-09-01から1ヶ月間の記事一覧
閉包同士の積集合や, 内部同士の和集合に関してなりたついくつかの基本的な性質をまとめたもの.
// (1) $u \geqq 0, v \geqq 0$ について $f(u)+f(v) \geqq f(u+v)$ PROOF: $u, v$ は非負なので, $\frac{u}{1+u} \geqq \frac{u}{1+u+v}$ かつ $\frac{v}{1+v} \geqq \frac{v}{1+u+v}$ . よって $f(u)+f(v) \geqq \frac{u}{1+u+v}+\frac{v}{1+u+v} =f(u+v)$…
// $(X, \mathcal{O}_X)$ は位相空間とし, $(Y, \mathcal{O}_Y)$ はその部分空間とする. $(X, \mathcal{O}_X)$ および $(Y, \mathcal{O}_Y)$ の閉集合全体の集合をそれぞれ $\mathfrak{A}_X$, $\mathfrak{A}_Y$ と表す. $A \subset Y$ とし, $i_{X}(A)=X$ に…